

ABSTRACT

Modeling a city poses a number of problems to computer graph-
ics. Every urban area has a transportation network that follows
population and environmental influences, and often a superim-
posed pattern plan. The buildings appearances follow historical,
aesthetic and statutory rules. To create a virtual city, a roadmap
has to be designed and a large number of buildings need to be
generated. We propose a system using a procedural approach
based on L-systems to model cities. From various image maps
given as input, such as land-water boundaries and population
density, our system generates a system of highways and streets,
divides the land into lots, and creates the appropriate geometry
for the buildings on the respective allotments. For the creation of
a city street map, L-systems have been extended with methods
that allow the consideration of global goals and local constraints
and reduce the complexity of the production rules. An L-system
that generates geometry and a texturing system based on texture
elements and procedural methods compose the buildings.

CR categories:

 F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems: Parallel
Rewriting Systems, I.3.7 [Computer Graphics]: Three-Dimen-
sional Graphics and Realism, I.6.3 [Simulation and Modeling]:
Applications

Keywords:

 L-system, software design, developmental mod-
els, modeling, urban development, architecture

1 INTRODUCTION

Modeling and visualization of man-made systems such as large
cities is a great challenge for computer graphics. Cities are sys-
tems of high functional and visual complexity. They reflect the
historical, cultural, economic and social changes over time in
every aspect in which they are seen. Examining pictures of a
large-scale city such as New York reveals a fantastic diversity of
street patterns, buildings, forms and textures. The modeling and
visualization of large-area cities using computers has become
feasible with the large memory, processing and graphics power
of todays hardware. The potential applications for a procedural
creation range from research and educational purposes such as
urban planning and creation of virtual environments to simula-
tion. Especially the entertainment market such as the movie and
game industry have a high demand for the quick creation of
complex environments in their applications.
Visual modeling of large, complex systems has a long tradition
in computer graphics. Most of these approaches address the
appearance of natural phenomena. Much of the appeal of such
renderings lies in the possibility to depict the complexity of
large-scale systems, which are composed of simpler elements.

Some of these systems include: the simulation of erosion [23],
particle based forests [28] and cloud modeling [25].
Grammar-based generation of models (especially L-systems) are
employed in computer graphics mainly to create plant geometry
[26]. L-systems have evolved into very sophisticated and power-
ful tools [20, 27] and have been extensively used in the modeling
of plant ecosystems described in [8].

1.1 Related Work in Urban Modeling

One approach to modeling existing cities is the use of aerial
imagery to extract the buildings and streets thereof, using com-
puter vision methods. There are various research projects that
rely on this approach, e.g. [15]. This method can be used to
rebuild cities, but is not designed to create new models without
photographic input data.
The existing research work concerning the visualization of cities
[6, 7, 13, 29] focuses on techniques for data management, fast
real-time visualization and memory-usage optimization.
In [1], Alexander et al. describe a pattern language, which con-
sists of over 250 relevant patterns for the successful construction
of cities, buildings and houses. They range from very general
patterns like “Ring Roads” to very specific ones like “Paving
with cracks between the stones”. Since these patterns are not
formalized, they cannot be used in the automatic creation pro-
cess of an urban environment.

Space Syntax

 has been developed by Hillier [16]. Space syntax
can be viewed as a set of theories analyzing the complexity of
large-scale spaces, such as cities. It tries to explain human
behaviors and activities from a spatial point of view and has
been used in the analysis of city pedestrian flows [17] or way-
finding processes [24]. This approach is analytical and relies on
the availability of city-maps. In the field of architectural interac-
tive design one approach might be mentioned: the

shape

gram-
mar

 developed by Stiny [31]. This method uses production rules,
but instead of operating on strings, a shape grammar defines
rules directly on shapes. Shape grammars have been used to gen-
erate two-dimensional patterns and in interactive design applica-
tions.

1.2 Our approach

We present a system called

CityEngine

 which is capable of
modeling a complete city using a comparatively small set of sta-
tistical and geographical input data and is highly controllable by
the user. To our knowledge, there is no such system available,
although one very similar project outline is presented under [34].
In [5], a method for generating urban models is presented by
refinement of existing geometry. However, in this approach a
basic model of the city buildings has to be created manually.
Other systems [4, 32] rely on aerial pictures as the main input
for building and road placement. Our

CityEngine

 creates
urban environments from scratch, based on a hierarchical set of
comprehensible rules that can be extended depending on the
users needs.
In [33], Wegener splits the urban model into subsystems. He
states that the subsystems

networks

,

land use

 and

housing

 are
among the slowest changing elements in an urban environment.
Therefore, in our system

CityEngine

, the creation of the city
is reduced to generating a traffic network and buildings. Land
use data is provided by the user in form of image-maps. When
studying maps and aerial photographs of large cities, it is obvi-
ous that the streets follow some sort of pattern on different

Procedural Modeling of Cities

Yoav I H Parish Pascal Müller

parish@imes.mavt.ethz.ch pascal@centralpictures.com

ETH Zürich, Switzerland Central Pictures, Switzerland

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

scales. Roads are the transportation medium for the urban popu-
lation distributed over the area. L-systems have been used in a
similar application [20], support branching very well and have
the advantage of database amplification [30]; this suggests their
potential use to generate convincing large-scale road patterns.
We have adapted the model of L-systems to enable the creation
of large cities, based on the data that has been collected in [11]
on four huge cities around the world, i.e. New York, Paris, Tokyo
and London.
Although we simplified the underlying model of the virtual city,
the main design goal for the system is easy extensibility. We
want to be able to add new subsystems, such as different trans-
portation networks (underground, train) and alternative land
uses. To achieve this, we extended the L-system with a higher-
level mechanism that makes the addition of new rules very easy.

1.3 Overview

In Chapter 2 we describe the concept and the pipeline of the

CityEngine

system, and the methods used therein. In Chapter
3 the idea of extended L-systems, which allow the implementa-
tion of global goals and local constraints is introduced. We dem-
onstrate the use of this extended concept on the creation of the
roadmap. Chapter 4 gives a brief overview of the generation of
allotments and buildings and explains our proposed mechanism
to simplify the texturing of facades. Finally, the results we
achieved are shown and discussed in Chapter 5.

2 SYSTEM ARCHITECTURE

The

CityEngine

 system consists of several different tools
which form the pipeline that is shown in figure 1. In a first step,
the input data is fed to the road-generation system, using an
extended L-system described in 3.4. The areas between the roads
are then subdivided to define the allotments the buildings are
placed on. In a third step, by applying another L-system, the
buildings are generated as a string representation of boolean
operations on simple solid shapes. Finally, a parser interprets all
the results for the visualization software. The visualization soft-
ware should be able to process polygonal geometry and texture
maps. This is the case for practically any 3D renderer. Addition-
ally, most scanline renderers support procedural textures, so the
proposed mechanism to generate facades of buildings can be
incorporated into the pipeline.

Most of the input data to build up the virtual city is represented
by 2D image maps which control the behavior of the system.
Those images can be easily generated either by drawing them or
by scanning from statistical and geographical maps, as found in
[11]. The data can be categorized into two general classes:

• Geographical Maps
- Elevation maps
- Land/water/vegetation maps

• Sociostatistical maps
- Population density
- Zone maps (residential, commercial or mixed zones)
- Street patterns (control behavior of streets)
- Height maps (maximal house height)

Control of the various parameters within the particular tools can
be changed by the user interactively or by providing parameter
files. For example, statistical measures such as the approximate
area size of a block or the average number of intersections per
square mile, such as in [18] can be used to change the resulting
street map. In figure 2 the top pictures are examples of a geo-
graphical image showing land-water boundaries and another
image depicting the distribution of the population over the area.

Two different L-systems are invoked for the creation of the com-
plete city, one for street, the other for building generation. The
population density of a city is influenced by the creation of
streets. Through streets, people are transported by the system to
the next highway [12]. We reflect this by using an approach sim-
ilar to the Open L-system model [20] when creating streets. The
L-system mechanism has been modified in such a way that vari-
ous different road patterns can be visualized using the same pro-
duction rules.
According to [12], not all roads change the population density of
their immediate local surroundings, e.g. roads connecting two
cities. We therefore chose to consider two types of roads:

high-
ways

 and

streets

. They differ in their purpose and behavior:
Highways connect areas with highly concentrated population
globally, by scanning the population density input map for
peaks. Streets cover the areas between highways according to
local population density, giving all neighborhoods transportation
access to the nearest highway. Together, these two classes form
the road map of the virtual city.
Once the road map is generated, the land is divided into smaller
areas surrounded by streets. These areas can be geometrically
subdivided to define the allotments for the individual buildings.
The buildings themselves are generated by a stochastic, paramet-
ric L-system. In our system the buildings are composed by
extruding and transforming an arbitrary outline.
For the final visualization in the renderer facade textures are gen-
erated using a semi-procedural approach. Every facade is tiled
into superimposed and nested grid structures. The grid cells
resulting from this subdivision can then be assigned textures or
procedural textures.

Geographical
Sociostatistical

Image Maps

Roadmap creation
Extended L-System

Division into lots
Subdivision

Building generation
L-System

Geometry
Parser

Roadmap
Graph

Allotments
Polygons

Buildings
Strings

Geometry
Polygons

Texture Engine
Grid creation

Shaders
Procedural

Facade elements
Image Maps

Renderer

Output
Images

Figure 1: The pipeline of the city creation tool. The dark boxes
list the results and data structures of the indiviual tools in the
white rectangles.

Figure 2: Left column: Water, elevation and population density
maps of an imaginary virtual city of 20 miles diameter. Right:
One possible roadmap generated from this input data.

3 CREATING THE STREET MAP

3.1 Extended L-systems

An L-system is a parallel string rewriting mechanism based on a
set of production rules. Each string consists of a number of dif-
ferent modules which are interpreted as commands. The parame-
ters for these commands are stored within the modules. When
writing a complex rule system to create a street map, there are a
large number of parameters and conditions that have to be imple-
mented to the L-system. The number of productions and their
complexity grows very quickly. Every time a new constraint is
implemented, many rules have to be rewritten. This makes
extensibility a very difficult task. Thus, instead of trying to set
the parameters of the modules inside the productions, the L-sys-
tem creates only a generic template at each step. We call this
generic template the

ideal successor

.
Therefore, the setting and the modification of parameters in the
L-system modules have been ported to external functions. These
functions follow a loose hierarchy to distinguish between higher-
level tasks and environmental constraints (fig. 3). We call these
functions

globalGoals

 and

localConstraints

, respectively. Every
time the rules are applied to an existing string of modules, the
following actions are executed:
• Return the

ideal successor

 by the L-system. The parameters
of the modules are unassigned.

• Call the

globalGoals

 function. This function determines the
parameter values of the dominant global goals. All parame-
ter values are set.

• Call the

localConstraints

 function. The parameters are
checked within the local constraints of the environment.
The parameter values are adjusted to fit these constraints. If
this function cannot find suitable parameters, it sets the
state flag to FAILED and the module is subsequently
deleted.

When invoked,

globalGoals

 and

localConstraints

consider sev-
eral influences that can set or change the values of the parame-
ters, respectively. The roadmap creation tool distinguishes
between the following global goals and local constraints.
• global: street patterns and population density
• local: land/water/park boundaries, elevation, crossing of

streets
Through the separation of module succession and parameter cal-
culation into other tasks, the rules for this extended L-system
become much simpler. This makes it easy to add new goals and
constraints without changing the production rules at all. Thus,
for the creation of all our examples of roadmaps only the follow-
ing set of production rules is used (we follow the notation style
used in [20] and [27]):

ω

: R(0, initialRuleAttr) ?I(initRoadAttr, UNASSIGNED)

p1

: R(del, ruleAttr) : del<0

→ ε

p2

: R(del, ruleAttr) > ?I(roadAttr,state) : state==SUCCEED
{globalGoals(ruleAttr,roadAttr) creates the parameters
 for: pDel[0-2], pRuleAttr[0-2], pRoadAttr[0-2]}

→

 +(roadAttr.angle)F(roadAttr.length)
 B(pDel[1],pRuleAttr[1],pRoadAttr[1]),
 B(pDel[2],pRuleAttr[2],pRoadAttr[2]),
 R(pDel[0],pRuleAttr[0]) ?I(pRoadAttr[0],UNASSIGNED)

p3

: R(del, ruleAttr) > ?I(roadAttr, state) : state==FAILED

→ ε

p4

: B(del, ruleAttr, roadAttr) : del>0

→

 B(del-1, ruleAttr, roadAttr)

p5

: B(del, ruleAttr, roadAttr) : del==0

→

 [R(del, ruleAttr)?I(roadAttr, UNASSIGNED)]

p6

: B(del,ruleAttr,roadAttr) : del<0

→ ε

p7

: R(del,ruleAttr) < ?I(roadAttr,state) : del<0

→ ε

p8

: ?I(roadAttr,state) : state==UNASSIGNED
{localConstraints(roadAttr) adjusts the parameters for:
 state, roadAttr}

→

?I(roadAttr, state)

p9

: ?I(roadAttr,state) : state!=UNASSIGNED

→ ε

The axiom

ω

 initializes the L-system with a road module

R

and
an insertion query module

?I

. This initial segment needs to be
located inside a legal area of the user input data, i.e. not on water
or in parks.
The first three productions control the

R

 module. The production

p2

 controls the road and branch creation. Two branch modules,

B

and a road module

R

 plus the insertion query

?I

 are created.
Their attributes are initialized according to the global goals
which returns an array of attributes (

pDel[0-2]

for branch delay
and deletion,

 pRuleAttr[0-2]

for rule-specific attributes

 and

pRoadAttr[0-2]

for road data, e.g. length, angle, etc).
The

R

 module uses the

del

 parameter as a break flag: The

glo-
balGoals

 function can set this to a negative value and the R mod-
ule is deleted in the next iteration by production

p1

. In

p3

 any

R

module is deleted if its state is set to

FAILED

, by the

localCon-
straints

 function thereby removing the road segment.
The production

p5

 creates a new road segment at the branch
points after the delay count (

del

) has reached zero. The

global-
Goals

 function can inhibit branches by setting their

del

 parame-
ter to a negative value. Production

p7

 deletes the query module

?I

 in cases where the

globalGoals

 in

p2

 set the delay of the
resulting

R

 module to a negative value. The last two productions
determine the actual creation of the road, checking if all the local
constraints are met by calling the

localConstraints

 function
which adjusts the values in the road attributes

roadAttr

. The state
variable is modified by

localConstraints

 to either

FAILED

 or

SUCCEED

 and determines if the road segment is created.

3.2 Global Goals for road creation

Global goals are primarily considered to set the parameters of
the modules to their initial values. The system weighs the influ-
ences of all active global goals and chooses the appropriate val-
ues for the parameters. The influence of a particular goal at any
point is controlled by the input image maps.

3.2.1 Population density

As mentioned above, the highways build the main connection
medium between different highly populated areas of a city
whereas streets develop into the residential areas and give the
habitants access to the next highway [12]. The determination of
the parameters of a highway segment are described as follows:
Highways connect centers of population. To find the next popu-
lation center, every highway road-end shoots a number of rays
radially within a preset radius. Along this ray, samples of the
population density are taken from the population density map.
The population at every sample point on the ray is weighted with
the inverse distance to the roadend and summed up. The direc-
tion with the largest sum is chosen for continuing the growth.
This mechanism is illustrated in figure 4.

Ideal
Successor

Global
Goals

Local
Constraints

proposed by
L-System

Parameters
unassigned

determine goals
from rules

Parameter value
setting

determine con-
straints from
environment

Parameter
modification

Predecessor

Figure 3: Functions applied to a successor.

Figure 4: Left: The road-end of every highway shoots radial
rays to find the next population peak (dark area). Right: A pos-
sible highway net, connecting population centers.

3
m

ile
s

On the contrary, streets do not change their direction by follow-
ing the steepest gradient of the population density map. Typi-
cally they follow the dominant street pattern. This is reasonable,
since most streets in urban areas are built following a superim-
posed pattern plan. The created street ends still lower the popula-
tion density in their environment, usually within the area of the
block, according to the mechanisms proposed for Open L-sys-
tems [20]. When an area with no population is reached, the
streets stop growing.

3.2.2 Road patterns

The other important global goal is the compliance of roads with
the dominant patterns in that area. This applies for both high-
ways and streets although in our urban model, streets are limited
in the possible patterns they can form. In figure 5 various fre-
quent road patterns are listed [9].

Most real cities display a number of road patterns due to histori-
cal growth and different phases of city creation. In [12], Fuesser
categorizes streets into two classes: main streets and settlement-
oriented side-roads. In his analysis, he compares raster with
radial patterns. In polycentric cities raster patterns prevail,
whereas in monocentric cities radial patterns dominate. Looking
at the road types, Highways can represent both patterns, streets
usually appear in raster or raster-related forms. In [11] the dis-
tinction of different zones in the city leads to the conclusion that
the central zone (Zone 1) is of such high population density that
it can be viewed as polycentric city. Therefore, in high density
zones the raster pattern is dominant.
We have adopted a selection of patterns to apply on the street
map and group them into different rules.
•

Basic rule

: This is the simplest possible rule. There is no
superimposed pattern and all roads follow population den-
sity. This may also be referred to as the natural growth of a
transportation network. Mainly older parts of cities show
such patterns. All other rules are based on restrictions of
this rule by narrowing the choices of branch angles and
road segment length.

• The

New York

 (or checkers)

rule

 follows a given global or
local angle and maximal length and width of a single block.
This is the most frequent street pattern encountered in
urban areas, where all highways and streets form rectangu-
lar blocks.

•

Paris

 (or radial)

rule

: The highways follow radial tracks
around a center that can be either calculated from the input
data or set manually.

•

San Francisco rule

: This pattern lets streets and highways
follow the route of the least elevation. Roads on different
height levels are connected by smaller streets, that follow
steepest elevation and are short. This pattern is usually
observed in areas with large differences in ground eleva-
tion. See figure 6 for an example.

The following table summarizes the goals that the road creation
follows:

If more than one pattern rule is active at a given location, all of
them are evaluated. The proposed parameter values are summed
up and weighted according to the value in the input image grey
scale map. This allows an easy blending of different street pat-
terns over a defined area as shown below in figure 7.

3.3 Local constraints

The

localConstraints

function

adjusts the parameter values pro-
posed by the

globalGoals

 function to the local environment.
Whenever a special situation in the environment is encountered,
these values are changed. If there is no possibility to find a valid
set of parameters, the function sets the state of the module to

FAILED

. It is then deleted from the module string by another
production in the L-system. As an extension to existing L-sys-
tems our implementation allows the creation of closed loops and
intersections of road branches. In the

CityEngine

 system,
streets and highways are subordinate to the same local con-
straints.
The

localConstraints

 function executes the two following steps:
• check if the road segment ends inside or crosses an illegal

area.
• search for intersection with other roads or for roads and

crossings that are within a specified distance to the segment
end.

Raster/Checker Radial/Concentric Branching

Figure 5: A selection of frequent road patterns.

Pattern name Pattern Example

Basic No superimposed pattern.

New York Rectangular Raster

Paris Radial to center

San Francisco Elevation min or max see figure 6

Table 1: An overview of the street pattern used in the
CityEngine system with a short description and an example.

Figure 6: Left: Elevation map and the resulting highway map
using the San Francisco rule. Right: Street map projected onto
the elevated geometry.

Figure 7: Left: Two different street pattern control maps for
New York and Paris rule. Right: The resulting street pattern of
the two maps overlaid.

If the first check determines that the road end is inside water, a
park or another illegal area, the system tries to readjust the val-
ues for the road segment in the following ways.
• Prune the segment length up to a certain factor so that it fits

inside the legal area of the starting point.
• Rotate the segment within a maximal angle until it is com-

pletely inside the legal area. This allows the creation of
roads that follow a coastline or a park boundary.

• Highways are allowed to cross illegal area up to a specified
length. The generated highway segment is flagged. At the
geometry creation stage it can then be replaced by e.g. a
bridge, or two tunnel entrances on both sides.

Once all road ends are checked for being inside legal territory,
the system now scans the surrounding of the road ends for other
roads to form crossings and intersections.

3.3.1 Self-sensitive L-Systems

The idea of L-system branches growing together and forming
closed loops could not be found in existing applications,
although a similar approach to the one we propose can be found
in the procedural generation of blood vessels [21]. In traffic sys-
tems the dead end road is the exception. Most roads end when
crossing other roads or circling back to themselves [9]. The
forming of loops changes the topology from a tree-like to a net-
like structure. Since we do not have an underlying model of
transportation flow simulation on our roadmap, we can ignore
the implications on street capacity.
At first the segment is checked for intersection with other seg-
ments. For this, all existing street segments in the surrounding
area are checked for intersection with the new segment. If one is
found, the road is pruned and a crossing is generated.
If the

localConstraints

 function finds a street within the given
radius of the end of a segment it can modify the parameters for
the following events illustrated in figure 8:
• two streets intersect

→

 generate a crossing.
• ends close to an existing crossing

→

 extend street, to reach
the crossing.

• close to intersecting

→

 extend street to form intersection.
If a crossing is generated, a new node and two edges in the
existing street graph have to be created. After a crossing is gener-
ated, a road stops growing.

Once the values of the parameters are finalized, the street map
can be rendered or output to the next step in the pipeline. Since
the system only creates straight road segments a method is
needed to smooth roads with a high curvature. The road creation
tool does this by implementing a simple subdivision scheme
based on [3].
Figure 9 below shows an example of the creation of a roadmap
using scanned maps of Manhattan island. The oldest part of
Manhattan is first generated following no generation pattern. All
newer parts of the city are created using the New York rule. The
local constraints change the direction of the highway to follow
the coastal line along the island. Note how the proposed bridges

cross the water very close to the locations of where the real
bridges are built.

4 MODELING OF BUILDINGS

Once the road map is generated, the system creates the allot-
ments for the placement of the buildings. A stochastic, paramet-
ric L-system then generates the geometry for the buildings.
Every building is assigned a texture. To keep memory usage
small, a semi-procedural approach to texturing has been taken.

4.1 Division into lots

After the creation of highways and streets the populated area of
the city is subdivided into many small areas which we call

blocks

. Those have to be divided into lots for the placement of
buildings, as shown in figure 10. We assume that most of these
allotments are convex and rectangularly shaped. The system
therefore forbids the creation of concave allotments. A block is
divided into smaller units using a simple, recursive algorithm
that divides the longest edges that are approximately parallel
until the the subdivided lots are under a threshold area specified
by the user.
In most cities there are regulations that control the maximum
height of a building through the ground area of the allotment and
zoning plan. Therefore, the user can control the maximum height
of a building through the usage of an image map and restrict the
generation of skyscrapers to certain zones. After the subdivision
of the blocks, all allotments that are too small or do not have
direct access to a street are discarded from the system.

Figure 8: Examples of local constraints. Upper row: Proposed
parameters by global goal. Lower row: after parameter correc-
tion.

Proposed
parameters

Modified
parameters

Figure 9: Street creation system applied to Manhattan. Top
row: The network after 28 and 142 steps. Middle: The final
roadmap. Lower: A real map of Manhattans streets for compar-
ison.

Figure 10: Left: Resulting street map. Middle: Blocks created
by scaling from street crossings. Right: The generated lots.
Allotments too small or without street access are removed.

4.2 Geometry

All buildings in our virtual cities are modeled with a parametric,
stochastic L-system. For every allotment one building is gener-
ated. To follow the different styles, we consider three types of
buildings: skyscrapers, commercial buildings and residential
houses. These are determined by the zoning rules, controlled
through the use of image maps. For every type of building a dif-
ferent set of production rules is executed.
Buildings are created by manipulating an arbitrary ground plan.
The modules of the L-system consist of transformation modules
(

scale and move), an extrusion module, branching and termina-
tion modules, and geometric templates for roofs, antennae, etc.
The final shape of the building is determined by its ground plan
which is transformed by interpreting the output of the L-system.
Although a large variety of building types can be generated this
way this is a limitation of the system, as the functionality of the
buildings can not be represented using only these simple rules.
Nevertheless, a high degree of visual complexity can be reached
as illustrated below in figure 11.

To allow for an automatic level-of-detail model creation, a
restricted ‘decreasing apices’ L-system class as described in [14]
can be used. Since the generation of the building starts with its
bounding box as the axiom, the output of each iteration can be
interpreted as a refining step of the geometry.
The output of the L-system is fed to another parser, which trans-
lates the resulting string into geometry readable by the visualiza-
tion systems.

4.3 Textures
A high degree of scene detail and complexity can be achieved
through the use of detailed textures on the buildings. In existing
applications, pictures of actual buildings are scanned, modified
and projected onto the surfaces of the building geometry.
Although this method reproduces the most detailed facade, the
amount of work to prepare the textures is too high compared
with our geometry generation time. Also, for a large number of
buildings, memory limitations pose a major problem on many
systems. Most of these difficulties can be addressed by the use of
procedural textures [10]. Unfortunately, not all the smaller
details that make up the appearance of a facade can be modelled
by such textures. Certain patterns like stone and brick walls can
be analyzed and synthesized ([22], [19]) but the description of a
general house facade cannot be modelled by these approaches.
Therefore we decided to design a tool for the semi-automatic
creation of facades using layering and a simple functional com-
position technique as discussed in [10] we call layered grids.
Our design is based on some observations of facades. To sim-
plify our model, the following assumptions about facade textures
have been made:
1. Facades show one or several overlayed or nested grid-like

structures where most grid cells accomplish the same func-
tion, i.e. typically windows and doors for openings.

2. Particular grid cells influence the positions and/or sizes of
the surrounding grid cells e.g. windows at ground level or
above a door have different sizes.

3. Irregularities in the grid structure mostly affect complete
rows and columns of the grids, not single grid cells.

Our goal was to create procedural textures that enable the user to
capture a certain style of facade by creating a generic style tex-
ture. Every single style texture should produce a rich variety of
different textures in the defined style regardless of the facade
dimensions. Since images of facade elements can capture the
intricate detail very well, the texturing system should still be
able to use scans of facade elements like bricks, doors and win-
dows.
The hierarchical grid system is based on interval groups. An
interval groups is a set of non-overlapping, ordered intervals.
The advantage of using one-dimensional intervals as the basis of
texturing is that rows and columns can be changed by modifying
single intervals in the interval group. This corresponds to the
third assumption listed above. Nevertheless, we still have the
possibility to access particular grid cells.
Two arbitrary interval groups can be combined to form a two
dimensional layer as shown in figure 12. A layer is defined by
two interval groups, an evaluation function eval between the
interval groups and a color evaluation function col. For each
point (s,t) where the function eval(s,t) is evaluated to 1 the point
is considered as an active point in the layer. All active points in a
layer are the active area of a layer. If this set is partitioned, the
partitions are called active grid cells.

If a point (s,t) is considered active, the color function col(s,t) is
called and returns the color (or bump or reflectivity) value of the
point. Non-rectangular active areas can easily be created by
assigning functions to the intervals in the interval groups. In all
the examples presented here, we assigned a simple PULSE func-
tion [10] to the interval groups and logical functions (AND, OR)
for the evaluation function eval.

The evaluation function of a layer can be another procedural tex-
ture, an image map or another nested layer or layerstack
described below. For example, when using an image map of a
window we used a number of pictures showing the window
open, half-opened and closed. By randomly applying the differ-
ent window to each cell, a great visual complexity of the facade
is easily established.
Layers can be stacked which means that if a point (s,t) on layer l
is evaluated as not active the same point is evaluated on layer l-1.
Different superimposed grid-like structures can be easily mod-
elled this way. To establish the influence of different layers on
each other, functions between layers can be established. The
principle of this mechanism is outlined in figure 13 above and
shown in an example in figure 14 below.

Figure 11: Five consecutive steps of the generation of a build-
ing. The axiom of the L-system is the bounding box of the
building, allowing easy LOD-generation.

IntervalGroup IG2:
 Grid(2).scale(0.8)

IntervalGroup IG1:
 Grid(3).scale(0.95)

Layer L1:
Rect(IG1, IG2, f=AND)

Figure 12: Left: Two interval groups define a layer via a func-
tion (logical AND in this example).

Figure 13: Left: A nested layer evaluated as a random image
map. Middle: A stack of layers. Right: The red layer influences
the scales of active cells in the green layer.

A limitation of the system at the moment is that each style tex-
ture has to be defined manually. As shown in figure 15, this is
done by visually determining the regularities and measuring
facade element sizes. Once a shader is defined the texture can
scale to any width or height.

5 RESULTS
Here we present a couple of images that result as the output from
the CityEngine system. The first visualization is performed
on a real-time platform, whereas the second example was ren-
dered using a raytracer.
Shown in figure 16 are screenshots of a ‘virtual’ Manhattan,
displayed in the real-time visualization software Division
dvreality 5.0. The model covers Manhattan island and consists of
approximately 13’000 buildings. The creation of the street graph
took less than ten seconds, the division into lots and the creation
of buildings approximately 10 minutes. The buildings were
extruded from the shape of the allotment and automatically tex-
tured, therefore we have not used level-of-detail representations
of the buildings in this visualization. Since the software does not
support the dynamic generation of textures we used a set of con-
ventional facade textures.The bridge was added to the city model
manually.

Our second example is a different automatically generated
model of Manhattan and a city generated from the data in figure
2. In this example we use geometry generated by the second L-
system and textures created through layered grids. The final pic-
tures in figure 17 and figure 18 were rendered using Alias/Wave-
front’s Maya 3.0.

6 FUTURE WORK
We have presented a system that is capable of generating the lay-
out of a large-scale city based on 2D-input data. In contrast to
existing similar systems our approach does not depend on aerial

photography of streets and buildings and is able to generate an
infinite number of cities using the same image input very
quickly. The system generates street maps through extended L-
systems which were extended to handle many different require-
ments on a global and local level without increasing the com-
plexity of the core system and creates building geometry on the
subsequently generated allotments. A basic texture mechanism
was introduced that captures the nested grid-like structures of
facades in procedural textures.
With such a complex system as a city creation system there are
many interesting problems that could lead to more realistic
results. Many of these were not addressed in this work and
might prove interesting extensions to the software.
Global Goals for road creation: Many more rules can be
added to let the road creation mechanism behave more realisti-
cally. The selection from a pool of goals could follow a behario-
val scheme using inhibition and level-of-interest [2].
Simulation and analysis of growth: Showing the evolu-
tion of a city poses new problems. Transportation flow simula-
tion could be implemented into the system and trigger the
roadmap growth process.
Buildings generation: A better mechanism for the auto-
matic generation of buildings could be developed by dividing the
space of a house into functional units and combining them to
generate new buildings by means of a similar production system
as used for the road creation.
Visualization: The creation of procedural texture styles could
be automated by assisting the user to find grid structures and
facade elements through methods of computer vision and auto-
matically creating the texture style shader.

Acknowledgments
We would like to thank Prof. Markus Gross for his continous
support of our work. Furthermore, we would like to thank
Hanspeter Brunner and Christian Iten for helping with the mod-
els and Jessica Bernatschek for working with us on the text.

REFERENCES
[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.

Fiksdahl-King and S. Angel. A Pattern Language. Oxford
University Press, New York, 1977.

[2] B. M. Blumberg and T. A. Galyean. Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual Environments.
In SIGGRAPH 95 Conference Proceedings, pages 47-54,
August 1995.

[3] E. Catmull and J. Clark. Recursively Generated B-spline Sur-
faces on Arbitrary Topological Meshes. Computer Aided
Design, 10(6):350-355, 1978.

[4] CGSD. Parametric Planets Software. http://www.cgsd.com/
ParametricPlanets.

[5] Max Chen. Generation of Three-Dimensional Geometry for
Night Illumination and Urban Visualization. http://graph-
ics.lcs.mit.edu/~maxchen/Boston.html, May 1999.

[6] D. Davis, W. Ribarsky, T.Y. Jiang, N. Faust and S. Ho. Real-
Time Visualization of Scalably Large Collections of Heteroge-
neous Objects. IEEE Visualization ‘99, pp. 437-440, October
1999.

[7] X. Decoret, G. Schauffler, F. Sillion and J. Dorsey. Multi-lay-
ered Impostors for Accelerated Rendering. Eurographics
18(3), 1999.

[8] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr
and P. Prusinkiewicz. Realistic Modeling and Rendering of
Plant Ecosystems. In SIGGRAPH 98 Conference Proceedings,
pages 275-286, August 1998.

[9] K. Dietrich, M. Rotach, E. Boppart. Strassenprojektierung.
Zurich 1993.

[10] D. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, S. Worley.
Texturing & Modeling. A Procedural Approach. 2nd. Edition,
Academic Press, 1998.

[11] C. Focas (ed.) The Four World Cities Transport Study. London
Research Centre, The Stationery Office, London 1998.

[12] K. Fuesser. Stadt, Strasse & Verkehr (City, Roads and Traffic),
Vieweg Verlag, 1997.

Figure 14. Left and middle: Brickhouse facade rendered with
different parameters. Right: Differently sized and colored
bricks around the window and the door, as an example of func-
tions between layers.

Figure 15. Left: The original facade picture partially overlaid
with the grid structure, where blue frames and red grid cells are
nested and random image layers, respectively. Middle and
right: Two facades in that style at different sizes.

Figure 16. Screenshots of the flythrough visualization.

[13] T. Fujii, K. Imamura, T. Yasuda, S. Yokoi and J. Torikawi. A
Virtual Scene Simulation System for City Planning. Computer
Graphics International, 1995.

[14] J.C. Hart. The Object Instancing Paradigm for Linear Fractal
Modeling. In Proceedings of Graphics Interface 92, pages
224-231, 1992.

[15] O. Henricsson, A. Streilein and A. Gruen. Automated 3-D
Reconstruction of Buildings and Visualization of City Models.
Bonn, Oct. 1996.

[16] B. Hillier. Space is the Machine: A Configurational Theory of
Architecture. Cambridge University Press, Cambridge, UK,
1997.

[17] B. Hillier, A. Penn, J. Hanson, Grajewski and J. Xu. Natural
Movement: or, Configuration and Attraction in Urban Pedes-
trian Movement. Environment and Planning B, Vol. 20, pp.
29-66, 1993.

[18] A.B. Jacobs. Great Streets. The MIT Press, Cambridge Massa-
chusetts, 1993.

[19] L. Lefebvre and P. Poulin. Analysis and Synthesis of Struc-
tural Textures. In Graphics Interface 2000 Proceedings, pages
77-86, May 2000.

[20] R. Mech and P. Prusinkiewicz. Visual Models of Plants Inter-
acting with Their Environment. In SIGGRAPH 96 Conference
Proceedings, pages 397-410, August 1996.

[21] V. Meier. Realistic Visualization of Abdominal Organs and its
Application in Laparoscopic Surgery Simulation. Dissertation,
ETH Zurich, 1999.

[22] K. Miyata. A Method of Generating Stone Wall Patterns. In
SIGGRAPH 90 Proceedings, pages 387-394, 1990.

[23] F.K. Musgrave, C.E. Kolb and R.S. Mace. The Synthesis and
Rendering of Eroded Fractal Terrains, In SIGGRAPH 89 Pro-
ceedings, pp. 41-50, July 1990.

[24] J. Peponis, C. Zimring and Y.K. Choi. Finding the Building in
Wayfinding. In Environment and Behavior, Vol. 22, pp. 555-
590., 1990.

[25] K. Perlin. An Image Synthesizer. Computer Graphics (SIG-
GRAPH 85 Proceedings), 19(3): 287-296, 1985.

[26] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants, Springer, 1990.

[27] P. Prusinkiewicz, M. James and R. Mech. Synthetic Topiary.
In SIGGRAPH 94 Conference Proceedings, pages 351-358,
July 1994.

[28] W.T. Reeves and R. Blau. Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particle
Systems. Computer Graphics (SIGGRAPH 85 Proceedings),
19(3): 313-322, 1985.

[29] S.M. Rubin and T. Whitted. A 3-dimensional Representation
for Fast Rendering of Complex Scenes. Computer Graphics
14(3), pages 110-116, 1980.

[30] A.R. Smith. Plants, Fractals and Formal Languages. Computer
Graphics (SIGGRAPH 84 Proceedings), 18(3):1-10,1984.

[31] G. Stiny. Pictorial and Formal Aspects of Shapes and Shape
Grammars. Birkhauser, Basel, Switzerland, 1975.

[32] Virtual Terrain Project. http://www.vterrain.org.
[33] M. Wegener. Operational Urban Models: State of the Art. In

Dortmunder Beiträge zur Raumplanung No. 84, University of
Dortmund, 1998.

[34] C.Yap, The Other Manhattan Project, Project description.
http://www.cs.nyu.edu/visual/home/proj/manhattan, 1998.

Figure 18. Somewhere in a virtual Manhattan.

Figure 17. A virtual city modelled using the data from figure 2. Approximately 26000 buildings were created.

